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1. Introduction

We consider the model nonlinear Schrödinger equation

i∂tu+∆u+ η|u|αu = 0, t ≥ 0, x ∈ RN (NLS)

where α > 0 and η ∈ R (or, possibly, η ∈ C). One could consider
a more general nonlinearity, but this is the canonical example. Here
u = u(t, x) is a complex-valued function. We consider solutions that
vanish at (space) infinity, u(t, x) → 0 as |x| → ∞ in some appropriate
sense, for instance u(t, ·) ∈ L2(RN). If η > 0, then the equation is
called focusing, while if η < 0 it is called defocusing.
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For motivation from physics, see for instance the book [126] by Sulem
and Sulem.

NLS is part of a family of nonlinear dispersive equations including
the nonlinear wave (m = 0) or Klein-Gordon (m ̸= 0) equation

∂ttu = ∆u−m2u+ η|u|αu,

and the (generalized) Korteweg-de Vries (KdV) equation

∂tu+ ∂3xu+ up∂xu = 0,

where p ∈ N, p ≥ 1.
These equations share several structural properties:

• They are semilinear (perturbations of a linear equation by a lower
order nonlinear term).

• They are conservative (one or more conservation laws, like energy).
• They are dispersive (despite of the conservation laws, solutions of the
linear equation disperse, i.e. they converge to zero locally in space
at time infinity).

The solutions of these three equations share many of their properties.
Some properties are easier to prove for one equation and more difficult
(sometimes open) for another equation of the family.

We will focus on a few fundamental topics only. Essentially: local
well-posedness, finite-time blowup, standing waves, asymptotic behav-
ior of global solutions.

We will not discuss several important issues, such as:

• Weak solutions constructed by compactness
• The “critical” cases (see the books by Bourgain [14] and Tao [128])
• NLS set on domains (exterior, bounded, etc) or manifolds
• NLS in fractional Sobolev spaces (Hs theory)
• The many extensions and variants of NLS: the equation with poten-
tials and/or with inhomogeneous nonlinearities, Hartree-type nonlin-
earities, fractional Laplacian, etc

• Solutions that do not vanish as |x| → ∞: kinks, Gross-Pitaevskii
(|u| → 1 as |x| → ∞), etc

Note that papers are becoming more and more technically involved
and long. Following closely the recent developments certainly implies
a considerable time investment. For instance, the last-to-date break-
through (finite-time blowup for defocusing supercritical NLS) consists
of a 168p paper [96] (construction of smooth self-similar solutions of the
compressible Euler equation) followed by a 107p paper [97] (application
to (NLS) via its hydrodynamical formulation).
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2. Invariances and conservation laws

Several transformations (invariances) leave the set of solutions of
equation (NLS) invariant, i.e. when such a transformation is applied
to a solution, the result is also a solution. The standard invariances
are

u(t, x) 7→ u(−t, x), γ ∈ R (time inversion)

u(t, x) 7→ eiγu(t, x), γ ∈ R (phase)

u(t, x) 7→ u(t+ t0, x+ x0), t0 ∈ R, x0 ∈ RN (space-time transl.)

u(t, x) 7→ u(t, x− βt)ei
β
2
·(x−βt), β ∈ RN (Galilean)

u(t, x) 7→ λ
2
αu(λ2t, λx), λ > 0 (scaling)

In view of the time inversion invariance, solving (NLS) backwards is
equivalent to solving (NLS) forward, up to comlex conjugation. There-
fore, in the sequel we will in general consider only positive time.

At least formally, equation (NLS) has the following conservation
laws: ∫

RN

|u(t, x)|2 =
∫
RN

|u(0, x)|2 (mass) (2.1)

E(u(t)) = E(u(0)) (energy) (2.2)

where E(w) =:
1

2

∫
RN

|∇w(, x)|2 − η

α + 1

∫
RN

|w(x)|α+2

ℑ
∫
RN

u(t, x)∇u(t, x) = ℑ
∫
RN

u(0, x)∇u(0, x) (momentum) (2.3)

Invariances and conservation laws are related by the Noether theorem
(see [126, Section 2.3]):

• Phase invariance corresponds to conservation of mass
• Time-translation invariance corresponds to conservation of energy
• Space-translation invariance corresponds to conservation of momen-
tum.

Note that the equation (NLS) has the above invariances (except time
inversion) for every η ∈ C, but the conservation laws are valid
only if η ∈ R.

The pseudo-conformal transformation

u(t, x) 7→ (1− bt)−
N
2 u

( t

1− bt
,

x

1− bt

)
e−i

b|x|2
4(1−bt) , b ∈ R (2.4)

also transforms a solution of (NLS) to a solution of the same equation,
but only when α = 4

N
. In the general case, it transforms a solution



4 AN OVERVIEW OF THE NONLINEAR SCHRÖDINGER EQUATION

of (NLS) to a solution of the nonautonomous equation

i∂tu+∆u+ η(1− bt)
Nα−4

2 |u|αu = 0.

The pseudo-conformal transformation corresponds to the variance
identity

d2

dt2

∫
RN

|x|2|u(t, x)|2 = 16E(u(t))−η4(Nα− 4)

α + 2

∫
RN

|u(t, x)|α+2. (2.5)

Alternatively, we can write (2.5) in the form

d2

dt2

∫
RN

|x|2|u(t, x)|2 = 4NαE(u(t))−2(Nα−4)

∫
RN

|∇u(t, x)|2. (2.6)

(Note that the last term in the above identities vanishes if α = 4
N
.)

Identity (2.5) is equivalent to the pseudo-conformal conservation
law ∫

RN

|(x+ 2it∇)u(t, x)|2 − 8ηt2

α + 2

∫
RN

|u(t, x)|α+2

=

∫
RN

|xu(0, x)|2

+
4(Nα− 4)

α + 2
η

∫ t

0

s

∫
RN

|u(s, x)|α+2dxds,

(2.7)

which is an exact conservation law when α = 4
N
. (Here also, it is

essential that η ∈ R.)

Remark 2.1. The above conservation laws have some important con-
sequences. (Recall that the conservation laws are formal as of now, so
their implications are only valid for the solutions for which the conser-
vation laws are actually valid.)

(i) The conservation of mass (2.1) implies that the solutions of (NLS)
are bounded in L2(RN) uniformly in time.

(ii) In the defocusing case η < 0, the conservation of energy (2.2)
implies that if u is a solution of (NLS), then ∥∇u(t)∥L2 is bounded
uniformly in time.

(iii) The above two observations imply that in the defocusing case
η < 0, the solutions of (NLS) are bounded in H1(RN) uniformly
in time.

(iv) In the focusing case η > 0, the solutions of (NLS) are bounded in
H1(RN) uniformly in time, provided α < 4

N
. This follows easily

from the conservation of charge and energy, together with the
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Gagliardo-Nirenberg inequality (see [42])∫
RN

|u|α+2 ≤ C
(∫

RN

|∇u|2
)Nα

4
(∫

RN

|u|2
) 4−(N−2)α

4
, (2.8)

which is valid for all α ≥ 0 such that (N − 2)α ≤ 4.
(v) In the focusing case η > 0 and if α = 4

N
, then by (2.8) the

solutions of (NLS) with sufficiently small L2 norm are bounded
in H1(RN) uniformly in time. This follows again from (2.8).

(vi) Suppose (N−2)α ≤ 4. Conservation of mass and energy together
with (2.8) imply that

∥u(t)∥2H1 ≤ [2E(u(0)) + ∥u(0)∥2L2 ] + C∥u(t)∥α+2
H1 .

It follows easily from a trapping argument that if ∥u(0)∥H1 is
sufficiently small, then ∥u(t)∥H1 remains bounded uniformly in
time. This is relevant in the focusing case when α ≥ 4

N
.

3. The linear Schrödinger equation

The Cauchy problem for the linear Schrödinger equation

i∂tu+∆u = 0 (3.1)

is easily solved by using the (space) Fourier transform F . One obtains
the ordinary differential equation for û = Fu

i∂tû− 4π2|ξ|2û = 0,

hence the solution (with the initial condition u(0) = φ)

û(t, ξ) = e−i4π2t|ξ|2φ̂(ξ), (3.2)

or equivalently

u(t, ·) = [F−1(e−i4π2t|ξ|2)] ⋆ φ, (3.3)

and

[F−1(e−i4π2t|ξ|2)](x) = (4πit)−
N
2 ei

|x|2
4t . (3.4)

It is not difficult to prove that for every φ ∈ S ′(RN) there exists a
unique solution u ∈ C(R,S ′(RN)) of (3.1) with the initial condition
u(0) = φ, given by the above formulas. We denote by

u(t) = eit∆φ

this solution. (eit∆)t∈R is the Schrödinger group. In particular, by (3.2)

|û(t, ξ)| = |φ̂(ξ)|
for all t ∈ R, ξ ∈ RN , so that

∥u(t)∥L2 = ∥φ∥L2 , t ∈ R, (3.5)
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and more generally

∥Dβu(t)∥L2 = ∥Dβφ∥L2 , t ∈ R,

for every multi-index β. Therefore all the Sobolev spaces Hs(RN),
s ∈ R are invariant by the linear flow, with conserved norm.
(Note that Lp(RN) is not invariant by the flow if p ̸= 2.)

Since ∥F−1(e−i4π2t|ξ|2)∥L∞ = (4π|t|)−N
2 by (3.4), it follows from (3.3)

that

∥u(t)∥L∞ ≤ (4π|t|)−
N
2 ∥φ∥L1 , t ̸= 0. (3.6)

This is the dispersion estimate, which expresses the fact that the so-
lution of (3.1) converges to 0 locally in space as |t| → ∞. Interpolation
of (3.5) and (3.6) yields the general dispersion estimate

∥u(t)∥Lr ≤ (4π|t|)−N( 1
2
− 1

r
)∥φ∥Lr′ , t ̸= 0. (3.7)

valid for all 2 ≤ r ≤ ∞ (where 1
r′
= 1− 1

r
).

The dispersion estimate is pointwise in time. In 1977, Strichartz es-
tablished a space-time estimate (the so-called Strichartz estimate) that
is now fundamental in the study of (NLS) (and of other dispersive equa-
tions). See [125], then [49, 136, 24, 67]. We now state the Strichartz
estimates as in [67]. We say that (q, r) ∈ R2 is an admissible pair if

2 ≤ q, r ≤ ∞, (N − 2)r ≤ 2N, r <∞ if N = 2,
2

q
= N

(1
2
− 1

r

)
.

(The notation “admissible pair” is introduced in [25, Definition 1]).
The homogeneous Strichartz estimate states that if φ ∈ L2(RN), then
u(t) = eit∆φ satisfies u ∈ Lq(R, Lr(RN)) for every admissible pair (q, r).
Moreover, there exists a constant C such that

∥u∥Lq(R,Lr(RN )) ≤ C∥φ∥L2 , (3.8)

for all u ∈ L2(RN). In space dimension N ̸= 2, the constant C can
be chosen independently of the admissible pair (q, r). The inhomoge-
neous Strichartz estimate concerns solutions of the linear, inhomoge-
neous Schrödinger equation

i∂tu+∆u+ f = 0, u(0) = 0,

where f = f(t, x). By Duhamel’s formula, it concerns, equivalently,
the function

u(t) =

∫ t

0

ei(t−s)∆f(s) ds.

The inhomogeneous Strichartz estimate states that if (γ, ρ) is an ad-
missible pair, if (γ′, ρ′) is the pair of conjugate exponents, and if f ∈
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Lγ′
(R, Lρ(RN)), then u ∈ Lq(R, Lr(RN)) for every admissible pair

(q, r). Moreover, there exists a constant C such that

∥u∥Lq(R,Lr(RN )) ≤ C∥f∥Lγ′ (R,Lρ′ (RN )), (3.9)

for all f ∈ Lγ′
(R, Lρ(RN)). In space dimension N ̸= 2, the constant C

can be chosen independently of the admissible pairs (q, r) and (γ, ρ).
Note that (3.9) is not the more general form of the nonhomogeneous

Strichartz estimate. In particular, one can prove estimates for non-
admissible pairs. See [27, 66, 131, 43, 127, 73, 74].

4. Local well-posedness

One can use the estimates of the Schrödinger group for solving the
Cauchy problem for (NLS) by a perturbation argument (fixed point).
Given and initial value φ, the appropriate formulation of the corre-
sponding Cauchy problem{

i∂tu+∆u+ η|u|αu = 0,

u(0, ·) = φ(·),
(4.1)

is Duhamel’s formula

u(t) = eit∆φ+ iη

∫ t

0

ei(t−s)∆(|u|αu)(s) ds. (4.2)

A crucial point in such problems is the choice of the space in which
one applies the perturbation argument. As observed in the previous
section, the appropriate spaces for the linear Schrödinger equation are
the L2-based Sobolev spaces Hs(RN). Other spaces might also be used,
but only as auxiliary spaces, namely the Lp spaces associated to the
dispersion estimate, and the LqLr spaces associated to the Strichartz
estimates.

We begin with a very simple case. If m > N
2
, then Hm(RN) ↪→

L∞(RN), and Hm(RN) is a Banach algebra, see [1]. Assuming α ∈ 2N,
i.e. α is an even integer, we may write |u|αu = u

α
2
+1u

α
2 , and we deduce

that the u 7→ |u|αu maps Hm(RN) → Hm(RN) and ∥ |u|αu∥Hm ≤
C∥u∥α+1

Hm . Moreover,

∥ |u|αu− |v|αv∥L2 ≤ C(∥u∥αL∞ + ∥v∥αL∞)∥u− v∥L2

≤ C(∥u∥αHm + ∥v∥αHm)∥u− v∥L2 .

Since eit∆ is an isometry of Hm(RN), one can apply a standard argu-
ment based on the Banach fixed point theorem to prove the following
result. (See [48] and [17, Theorem 4.10.1]).
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Theorem 4.1. Suppose α ∈ 2N and let m ∈ N, m > N
2
. For ev-

ery φ ∈ Hm(RN), there exist T > 0 and a unique solution u ∈
C([0, T ], Hm(RN)) of (4.1). Moreover, the following properties hold.

(i) The solution can be extended to a maximal interval of existence
[0, Tmax) with 0 < Tmax ≤ ∞.

(ii) (Blow-up alternative) If Tmax < ∞, then ∥u(t)∥Hm → ∞ as t ↑
Tmax. More precisely,

lim inf
t↑Tmax

(Tmax − t)
1
α∥u(t)∥Hm > 0. (4.3)

Moreover, lim sup ∥u(t)∥L∞ = ∞ as t ↑ Tmax.
(iii) u depends continuously on φ in the following sense. The function

Tmax is lower semicontinuous Hm(RN) → (0,∞]. Moreover, if
φn → φ in Hm(RN) and if un is the maximal solution of (4.1)
with the initial value φn, then un → u in C([0, T ], Hm(RN)) for
every 0 < T < Tmax.

(iv) There is conservation of mass and energy, i.e. (2.1) and (2.2)
hold for all 0 ≤ t < Tmax.

A similar result holds if α ̸∈ 2N, under the assumption N
2
<

m ≤ [α] + 1 (N
2
< m ≤ [α] if α is an odd integer), where [α] is the

integer part of α. See [17], Theorem 4.10.1 and Remark 4.10.3.
Theorem 4.1 is fairly elementary, but it is not obvious to obtain suf-

ficient conditions on the initial value so that the corresponding solution
is global (i.e. Tmax = ∞). Indeed, Remark 2.1 provides sufficient condi-
tions so that solutions of (4.1) are bounded in H1(RN) on the interval
[0, Tmax). For instance, in the defocusing case η < 0, all solutions are
bounded in H1(RN). In dimension N = 1, one can choose m = 1,
so that by the blow-up alternative, Tmax = ∞ for every initial value
φ ∈ H1(R). In higher dimension, however, one must choose m ≥ 2 in
Theorem 4.1, and it is not clear that the H1 bound on the solutions
will prevent blowup of the Hm norm. This is true in the H1-subcritical
case (N − 2)α < 4 in space dimensions N ≤ 7 (see [48]). It seems
that the case of larger dimensions N ≥ 8 is open. In the energy su-
percritical case (but still for the defocusing equation), it can happen
in higher dimension that some solutions blow up in finite time in Hm

(even though they are bounded in H1). See [97].
In view of the above observations, it is tempting to solve the Cauchy

problem (4.1) in a space corresponding to the mass and energy, i.e. the
space H1(RN). In order to solve locally the Cauchy problem in H1,
it seems natural to impose that the therm

∫
|u|α+2 in the energy be

controlled by the H1 norm. By Sobolev’s embedding, this yields the
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condition α ≤ 4
N−2

. The same condition appears if one requires that

∥u∥H1 controls ∥ |u|αu∥H−1 . (Recall that if u ∈ H1, then ∆u ∈ H1, so
this is also a natural condition by the equation.) The exponent α = 4

N−2

also arises from a scaling argument. Indeed, by scaling invariance, if
u is a solution of (NLS) with the initial value φ, then for all λ > 0,

uλ(t, x) = λ
2
αu(λ2t, λx) is also a solution of (NLS), with the initial

value φλ(x) = λ
2
αφ(λx). Moreover, ∥∇φλ∥L2 = λ

4−(N−2)α
2α ∥∇φ∥L2 , so

that ∥∇φλ∥L2 = ∥∇φ∥L2 for all λ > 0 if and only if α = 4
N−2

. Thus on

expects the exponent α = 4
N−2

to be critical for the H1 theory.
Using the dispersion estimates and/or the Strichartz estimates, one

can prove the following local well-posedness result, in theH1-subcritical
case. See Ginibre-Velo [46], Kato [64, 65]. For the lower estimate (4.5),
see [26, Theorem 1.1 (vii)]. See also Proposition 6.5.1 (variance iden-
tity) and Theorem 7.2.1 (pseudo-conformal conservation law) in [17].

Theorem 4.2. Suppose

α > 0, (N − 2)α < 4. (4.4)

Given any φ ∈ H1(RN), there exist T > 0 and a unique solution
u ∈ C([0, T ], H1(RN)) ∩ C1([0, T ], H−1(RN)) of (4.1). Moreover, the
following properties hold.

(i) The solution can be extended to a maximal interval of existence
[0, Tmax) with 0 < Tmax ≤ ∞.

(ii) u ∈ Lq((0, T ),W 1,r(RN)) for every 0 < T < Tmax and every ad-
missible pair (q, r).

(iii) (Blow-up alternative) If Tmax < ∞, then ∥u(t)∥H1 → ∞ as t ↑
Tmax. More precisely,

lim inf
t↑Tmax

(T − t)
1
α
−N−2

4 ∥u(t)∥H1 > 0. (4.5)

(iv) u depends continuously on φ in the following sense. The function
Tmax is lower semicontinuous H1(RN) → (0,∞]. Moreover, if
φn → φ in H1(RN) and if un is the maximal solution of (4.1)
with the initial value φn, then un → u in C([0, T ], H1(RN)) and in
Lq((0, T ),W 1,r(RN)) for every 0 < T < Tmax and every admissible
pair (q, r).

(v) There is conservation of mass and energy, i.e. (2.1) and (2.2)
hold for all 0 ≤ t < Tmax.

(vi) If | · |φ ∈ L2(RN), then | · |u ∈ C([0, Tmax), L
2(RN)), the map

t 7→
∫
RN |x|2|u(t, x)|2 belongs to C2([0, Tmax), and the variance

identity (2.5) and the pseudo-conformal conservation law (2.7)
hold for all 0 ≤ t < Tmax.
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5. Standing waves in the focusing case

A standing wave (or solitary wave, or stationary state) is a
solution of (NLS) of the form

u(t, x) = eiωtϕ(x). (5.1)

Such a solution, if it exists, has the constant profile ϕ, modulated by
the periodic, space independent phase eiωt. It is in particular a global
solution of (NLS). Moreover, it is a genuinely nonlinear effect, since
|u(t, x)| = |ϕ(x)| is time-independent, so there is no dispersion.

Clearly, u given by (5.1) is a solution of (NLS) if and only if ϕ is a
solution of the nonlinear elliptic equation

−∆ϕ+ ωϕ = η|ϕ|αϕ. (5.2)

We assume that (N − 2)α < 4, and we look for solutions ϕ ∈
H1(RN), giving H1 solutions of (NLS) in the energy-subcritical case.
Multiplying the equation by ϕ and taking the real part yields∫

RN

|∇ϕ|2 + ω

∫
RN

|ϕ|2 = η

∫
RN

|ϕ|α+2. (5.3)

Moreover, Pohozaev’s identity yields (see [12, Proposition 1])

N − 2

2

∫
RN

|∇ϕ|2 + Nω

2

∫
RN

|ϕ|2 = Nη

α + 2

∫
RN

|ϕ|α+2. (5.4)

It follows from (5.3) and (5.4) that

E(ϕ) =
Nα− 4

2Nα

∫
RN

|∇ϕ|2, (5.5)

and

E(ϕ) +
ω

2

∫
RN

|ϕ|2 = 1

N

∫
RN

|∇ϕ|2. (5.6)

If ω ≤ 0, then there is no nontrivial solution ϕ ∈ H1(RN)
of (5.2). This is a delicate result, see [63, 2] (see also [18, p. 52]). If
ω > 0 and η ≤ 0, then there is no nontrivial solution ϕ ∈ H1(RN)
by (5.3).

We now assume ω > 0 and η > 0.
In dimension N = 1, a simple calculation shows that there is the pos-

itive, even, radially decreasing, exponentially decaying solution of (5.2)

ϕ(x) =
(ω(α + 2)

2η

) 1
α
(
cosh

(α
2

√
ωx

))− 2
α
.

All other (complex valued) solutions of (5.2) have the form eiθ0ϕ(x−x0)
for some θ0, x0 ∈ R (see e.g. [17, Theorem 8.1.6]).
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In dimension N ≥ 2, there always exists a positive, radially sym-
metric and decreasing solution of (5.2). It can be constructed by vari-
ational methods (constrained minimization) [122, 12, 11], or by ODE
methods [61, 85]. Radially symmetric, positive solutions of (5.2) are
unique, see [76, 84]. In fact, any positive solution of (5.2) is radially
symmetric about some point of RN , see [44]. Therefore, if we denote
by Φ the (unique) radially symmetric, positive solution of (5.2), then
any positive solution of (5.2)has the form Φ(x− x0) for some x0 ∈ R.
As opposed to the one-dimensional case, there are infinitely many gen-
uinely different solutions of (5.2) if N ≥ 2. Again, these solutions can
be constructed by variational arguments [122, 13, 11, 7] (and they are
genuinely different because their H1 norm is unbounded), or by ODE
methods [61, 85] (and they are genuinely different by nodal consider-
ations). In particular, for every integer m ≥ 0, there exists a radially
symmetric solution of (5.2) with exactly m zeros. This is not yet the
end of the story, since there are many non-symmetric (in particular,
non-radial) solutions of (5.2), see [4, 5, 86, 60].

The asymptotic behavior as |x| → ∞ of the solutions ϕ ∈ H1(RN)
of (5.2) is precisely known. First, it follows from standard arguments
that ϕ ∈ C2(RN) and that ϕ has exponential decay at infinity, see
e.g. [17, Theorem 8.1.1]. Then it follows from [101, Theorem 4.3] that

ϕ(x) = |x|−
N−1

2 e−|x|
√
ω
[
f
( x

|x|

)
+ g

(
|x|, x

|x|

)]
, (5.7)

where f ∈ L2(SN−1), f ̸= 0; and
∫
SN−1 |g(r, θ|2dθ = O(r−γ) for some

γ > 0.
Equation (5.2) is not scaling invariant, however if ϕ is a solution

of (5.2), then for all λ > 0,

ϕλ(x) = λ
2
αϕ(λx) (5.8)

is a solution of

−∆ϕλ + λ2ωϕλ = η|ϕλ|αϕλ. (5.9)

In other words, if ϕ is the profile of a standing wave with frequency ω,
then ϕλ is the profile of a standing wave with frequency λ2ω.

The (unique) positive, radially symmetric solution of (5.2) is called
the ground state. This solution is also characterized by several varia-
tional criteria. For further reference, we denote by Q the ground state
for ω = η = 1 and α = 4

N
, i.e. Q is the unique positive, radially

symmetric solution of

−∆Q+Q = |Q|
4
NQ. (5.10)
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Given ω > 0, we let Qω be the ground state with frequency ω, i.e.

Qω(x) = ω
1
αQ(x

√
ω). (5.11)

An important variational characterization ofQ is due to Weinstein [133]
and is related to the best constant in the Gagliardo-Nirenberg esti-
mate (2.8) in the case α = 4

N
. More precisely,

1

2 + 4
N

∫
RN

|u|2+
4
N ≤ 1

2

(∫
RN

Q2
)− 2

N
(∫

RN

|∇u|2
)(∫

RN

|u|2
) 2

N
, (5.12)

for all u ∈ H1(RN). It follows that if α = 4
N
, then

E(u) ≥ 1

2
∥∇u∥2L2

1−
∥u∥

2
N

L2

∥Q∥
2
N

L2

 , (5.13)

for all u ∈ H1(RN).
By Galilean invariance, if u is a standing wave (5.1), then

uβ(t, x) = eiωtei
β
2
·(x−βt)ϕ(x− βt), (5.14)

is also a solution of (NLS) for all β ∈ RN . We can write

uβ(t, x) = eiωtψβ(x− βt) where ψβ(x) = ei
β
2
·xϕ(x),

and we see that uβ is the profile ψβ traveling with the velocity β and
modulated by the periodic, space independent phase eiωt. Such a solu-
tion is called traveling wave, or soliton.

In the case α = 4
N
, we can apply the pseudo-conformal transforma-

tion (2.4) to the particular solution u(t, x) = eitQ(x)of (NLS). Choos-
ing b = 1

T
with T > 0, we obtain the solution v of (NLS) given by

vT (t, x) =
( T

T − t

)N
2
ei

tT
T−t e−i

|x|2
4(T−t)Q

( xT

T − t

)
, (5.15)

for t < T and x ∈ RN . It follows that vT ∈ C((−∞, T ), H1(RN)) is a
solution of (NLS) for t < T . Moreover,

∥vT (t)∥Lr =
( T

T − t

)N
2
(1− 2

r
)

∥Q∥Lr , t < T, (5.16)

for every 1 ≤ r ≤ ∞ and

∥∇vT (t)∥2L2 =
( T

T − t

)2

∥∇Q∥2L2 +
1

4T 2

∫
RN

|x|2Q(x)2dx, t < T.

(5.17)
Thus we see that

(T − t)∥∇vT (t)∥L2 −→
t→T

T∥∇Q∥L2 . (5.18)
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In particular, vT blows up at t = T twice faster than the lower bound
given by (4.5). This explicit example of blowup is taken from [135].

Remark 5.1. Note that the above observation concerning (5.15) apply
not only for the ground state Q, but also when Q is replaced by any
nontrivial H1 solution of (5.2).

6. Global existence vs. finite-time blowup

We consider the equation (NLS) in the energy subcritical case (N −
2)α < 4. Given any φ ∈ H1(RN), there exists a unique H1 solution u
of (4.1) defined on the maximal interval [0, Tmax), and we look for suffi-
cient conditions for global existence (Tmax = ∞) or finite-time blowup
(Tmax < ∞). Since the mass and energy are conserved, we can apply
Remark 2.1.

We see that in the defocusing case η < 0, all solutions are global and
uniformly bounded (with respect to time) in H1(RN). (The original
result is [46].)

We now study the focusing case η > 0.
In the mass-subcritical case α < 4

N
. all solutions are global and

uniformly bounded (with respect to time) in H1(RN). (The original
result is [46].)

In the mass-critical case, if ∥φ∥L2 is sufficiently small, then the cor-
responding solution u is global and uniformly bounded (with respect
to time) in H1(RN). In fact, we can use (5.13) to obtain an explicit
condition, see [133]. Applying (5.13) and conservation of mass and
energy, we see that

E(φ) = E(u) ≥ 1

2
∥∇u∥2L2

1−
∥u∥

2
N

L2

∥Q∥
2
N

L2

 =
1

2
∥∇u∥2L2

1−
∥φ∥

2
N

L2

∥Q∥
2
N

L2

 ;

and so, if

∥φ∥L2 < ∥Q∥L2 , (6.1)

then ∥∇u∥L2 is bounded, so Tmax = ∞ by the blowup alternative and
the solution is uniformly bounded (with respect to time) in H1(RN).

In the mass-supercritical case α > 4
N
, we deduce from Remark 2.1

that if ∥φ∥H1 is sufficiently small, then the corresponding solution
of (4.1) is global and uniformly bounded (with respect to time) in
H1(RN).

Thus we see that finite-time blowup may only occur in the mass-
critical and mass-supercritical cases, for sufficiently large initial data.



14 AN OVERVIEW OF THE NONLINEAR SCHRÖDINGER EQUATION

We note that the condition (6.1) for global existence in the mass-
critical case is optimal. Indeed, the explicit solution (5.15) blows up in
finite time and has exactly the mass ∥Q∥L2 , see (5.16).

We now examine sufficient conditions for finite-time blowup. All such
conditions are based on the variance identity (2.5) or some modification
of it. The first applications of (2.5) are due to [139] (see in particular
inequality (3.7) and the comments that follow) in the case N = 3,
α = 2 and [51] in the general case. The main result is the following.

Theorem 6.1. Suppose η > 0, α ≥ 4
N
, (N−2)α < 4. Let φ ∈ H1(RN)

and let u be the corresponding solution of (4.1) defined on the maximal
interval [0, Tmax). If E(φ) < 0 and | · |φ ∈ L2(RN), then Tmax <∞.

The proof is quite elementary. By (2.5) and conservation of energy,
the C2 function f(t) =

∫
RN |x|2|u(t, x)|2 satisfies

f ′′(t) ≤ 16E(u(t)) = 16E(φ) < 0;

And so,
0 ≤ f(t) ≤ f(0) + tf ′(0) + 8t2E(φ),

for all 0 ≤ t < Tmax, so that Tmax ≤
f ′(0)+

√
f ′(0)2+8f(0)(−E(φ))

16(−E(φ))
<∞.

Whether or not the assumption | · |φ ∈ L2(RN) can be removed in
Theorem 6.1 is a long standing open problem. It can be removed in
the one-dimensional mass-critical case α = 4 (see [107]) and for radially
symmetric solutions in dimensions N ≥ 2 under the extra assumption
α < 4 if N = 2 (see [108]). It also can be removed in the mass
critical case α = 4

N
, N ≥ 2, assuming a spectral condition, and for

initial values φ satisfying ∥φ∥L2 ≤ ∥Q∥L2 +ε for some sufficiently small
ε > 0, see [90]. In all other cases, the problem is open.

7. Stability of standing waves in the focusing case

According to the “soliton resolution conjecture”, a global solution
of (NLS) should split into a sum of solitons traveling at different ve-
locities and a dispersive part. Of course, this formulation is vague in
what concerns the topologies involved and the regularity of the solu-
tions under consideration. For (NLS), the soliton resolution conjecture
is essentially open, except in the one-dimensional, cubic case. Indeed,
the equation is then completely integrable and can be studied by in-
verse scattering methods [35, 38, 62, 106, 138, 140, 141].

In the focusing case η > 0, it is natural to study the stability of the
standing waves of Section 5.

The standing wave u(t, x) = eiωtϕ(x) is stable if an initial value close
(in H1(RN)) to ϕ (the initial value of u) produces a solution of (NLS)
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which remains close to u in some appropriate sense. The “appropriate
sense” must sake into account the invariances of the equation. Indeed,
by Galilean invariance and uniqueness, for any β ∈ RN the initial value

ϕβ(x) = ei
β·x
2 ϕ(x) produces the solution uβ(t, x) = ei

β·(x−βt
2 eiωtϕ(x−βt).

We have ∥ϕβ −ϕ∥H1 → 0 as |β| → 0, but uβ does not remain close to u
for all time. However, uβ remains close to u modulo space translations
and multiplication by a constant phase. In other words, uβ remains
close to the orbit O(ϕ) = {eiθϕ(· − y); θ ∈ R, y ∈ RN}. So we say that
the standing wave u(t, x) = eiωtϕ(x) is (orbitally) stable if an initial
value close to ϕ in H1(RN) produces a solution that remains close (in
H1(RN)) to O(ϕ). Otherwise, the standing wave is called (orbitally)
unstable. This means that there exists an ε-neighborhood of O(ϕ)
such that some initial values arbitrarily close to ϕ produce solutions
of (NLS) that eventually leave this neighborhood. One also uses a
stronger notion of instability. The standing wave u(t, x) = eiωtϕ(x) is
unstable by blowup if initial values arbitrarily close to ϕ (inH1(RN))
can produce solutions of (NLS) that blow up in finite time.

In the mass-critical case α = 4
N
, all standing waves v(t) = eiωtϕ

with ϕ ∈ H1(RN), ϕ ̸= 0 are unstable by blowup. More precisely,
for every ε > 0, there exists φ ∈ H1(RN) such that ∥φ − ϕ∥H1 ≤ ε
and the solution u of (4.1) blows up in finite time. In particular, even
though u(0) can by arbitrarily close to v(0), u(t) does not remain close
to v(t) for all time. This is proved in [133]. The argument is very
simple. It follows from (5.5) that E(ϕ) = 0. Therefore, if φ = (1+ δ)ϕ
with δ > 0, then

E(φ) = (1 + δ)2E(ϕ)− η
[(1 + δ)2+

4
N − (1 + δ)2]

2 + 4
N

∫
RN

|ϕ|2+
4
N < 0.

Since ϕ has exponential decay by (5.7), it has finite variance, so that
u blows up in finite time.

Still in the mass-critical case, one can prove another form of insta-
bility for the ground state Q. Indeed, if ∥φ∥L2 < ∥Q∥L2 , then we know
that the corresponding solution u of (4.1) is global. In fact, one can
prove that u scatters (see [68, 69] for the radial case and [36] for the
general case), and in particular that ∥u(t)∥Lp → 0 as t → ∞ for all
2 < p < 2N

N−2
. In particular, u does not remain close to the standing

wave eitQ. This is true for φ = (1 − ε)Q, 0 < ε < 1, which can be
arbitrarily close to Q.
In the mass-supercritical case α > 4

N
, standing waves have positive

energy by (5.5), so that the above argument does not apply. One can
prove that the ground state is unstable by blowup. This follows
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from the variance identity and an appropriate variational characteri-
zation of the ground state. See [10], and also [17, Theorem 8.2.2] for
details. One can expect that the other (non ground state) standing
waves are unstable, maybe not by blowup. The general case is open,
but radially symmetric standing waves unstable, see [52, Theorem 3.2].
The proof relies on the analysis of an appropriate linearized operator.

As in the mass-critical case, one can prove instability of the ground
state by scattering, see [59, 37, 40, 3].

Even when the standing waves are unstable, there may be directions
of stability, i.e. stable manifolds. In fact, there should be in general
a finite number of instability directions. The study of the stability di-
rections of the ground state is related to the study of the asymptotic
stability of the ground states. This is a very delicate issue, for which
one can consult the review articles by Kowalczyk, Martel and Muñoz
[75], and by Cuccagna and Maeda [33] There are very few asymptotic
stability results available, and they concern the cubic 3-dimensional
equation. The main result is the existence of a local center-stable
manifold around the ground state, such that for all initial data in this
manifold, the solution decomposes into a moving soliton and a dis-
persive part [120, 8, 104]. This is related to the soliton resolution
conjecture.

In the mass-subcritical case α < 4
N
, the ground state is orbitally

stable [21]. This follows easily from conservation of mass and en-
ergy, and an appropriate variational characterization of the ground
state. The result also follows from the general conditions obtained
in the works [53, 54] and based on the study of an appropriate lin-
earized operator. Orbital stability of the ground state ϕ means that if
φ is sufficiently close to ϕ, then there exist parameters ω(t) ∈ R and
x(t) ∈ RN such that the solution u(t) of (4.1) remains close for all time
to eiω(t)ϕ(· − x(t)). The “modulation equations” satisfied by the pa-
rameters ω(t) and x(t) are studied in [134]. A fundamental ingredient
is the study of the spectral properties of the linearized operators

L+ = −∆+ ω − (α + 1)ϕα,

L− = −∆+ ω − ϕα.

Note that in particular L−ϕ = 0 and L+(∂xj
ϕ) = 0 for 1 ≤ j ≤ N .

In fact, L− is a self-adjoint, nonnegative operator on L2(RN) with null
space Rϕ, and L+ is a self-adjoint operator on L2(RN) whose null space
is span {∂xj

ϕ; 1 ≤ j ≤ N}.
One can expect that the standing waves that are not ground states

are unstable, but it seems that no result of this type is available.



AN OVERVIEW OF THE NONLINEAR SCHRÖDINGER EQUATION 17

It seems that there is only one asymptotic stability result available
in the mass subcritical case. It concerns the cubic, one-dimensional
equation, and is based on the inverse scattering method. See [34, The-
orem 1.3].

Some solutions of (NLS) decompose as t→ ∞ in the form of a sum
of solitons traveling at different velocities. Such solutions are called
multi-solitons. See [87] (mass-critical case), [81] (mass-subcritical
case), [32] (mass-supercritical case). More precisely, let 0 < α < 4

N−2
.

For any k ∈ {1, . . . , K}, K ∈ N, let ω0
k > 0, vk ∈ RN , x0k ∈ RN ,

and γ0k ∈ R. Assume that, for any k ̸= k′, vk ̸= vk′ . Let Rk(x, t) =

Qω0
k
(x − x0k − tvk)e

i( 1
2
vk·x− 1

4
|vk|2t+ω0

Kt+γ0
k) be a solitary wave of (NLS)

moving on the line x = x0k+tvk. There exists anH
1 solution u of (NLS)

such that, for all t > 0,∥∥∥u(t)− K∑
k=1

Rk(t)
∥∥∥
H1

≤ Ce−θ0t

for some θ0 > 0 and C > 0. Construction is made by solving a Cauchy
problem at infinity. The standing waves are at distance of order t, and
they are exponentially decaying, so their interaction is weak.

Several generalizations and extensions: Similar construction with
excited states instead of the ground state [31]. Multiple existence (non-
uniqueness) in the one-dimensional, mass-supercritical case [30]. Multi-
solitons with infinitely many terms [78, 79].

Some solutions involve solitons moving at approximately the same
velocity. Their interaction is strong and the construction is much more
delicate. More precisely, in the case α ̸= 4

N
, there exists a solution u

of (NLS) such that

∥u(t)− eγ(t)(Q(· − x(t)) +Q(·+ x(t))∥H1 ≤ C

t

where |x(t)| = (1 +O(1)) log t. See [105].
The existence of such a solution is ruled out by the variance identity

in the mass-critical case. (We would have
∫
|x|2|u|2 ∼ (log t)2 but

d2

dt2

∫
|x|2|u|2 is constant.) A different phenomenon takes place in this

case. More precisely [83], given an integerK ≥ 1, there exists a solution
u of (NLS) such that∥∥∥u(t)− eiγ(t)

K∑
k=1

µ(t)Q(µ(t)(· − xk(t)))
∥∥∥
H1

−→
t→∞

0,

where γ(t) ∈ R is some phase parameter, the translation parameters
|xk(t) converge as t→ ∞ to the vertices of a K-sided regular polygon,
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and
µ(t)

log t
−→
t→∞

1.

So u(t) is asymptotically the sum of K solitons at logarithmic distance,
but the solitons are concentrated logarithmically by µ(t). This is most
interesting! Indeed, the solution u is global, but unbounded in
H1, since

∥∇u(t)∥L2

log t
−→
t→∞

√
K∥∇Q∥L2 . (7.1)

Applying the pseudo-conformal transformation, one obtains a solution
ũ of (NLS) that blows up at t = 1 with

1− t

| log(1− t)|
∥∇ũ(t)∥L2 −→

t→1

√
K∥∇Q∥L2 . (7.2)

In particular, the solution ũ blows up faster than the pseudo-
conformal rate (5.18).

Global, unbounded solutions satisfying a lower bound like (7.1) do
not exist in the mass-supercritical case. Indeed, in this case a
global solution satisfies

lim inf
t→∞

∥∇u(t)∥L2 <∞.

This can be seen by integrating twice (2.6) to obtain
∫ t

0

∫ s

0
∥∇u(σ)∥2L2 ≤

Ct2. Does there exist any global, unbounded solution in the
mass-supercritical case?

Note that the multi-soliton results fit in the soliton resolution con-
jecture. However, there is no dispersive term. It seems that there is
no available results of a solution in the form of a multi-soliton
plus a dispersive term. (Except in the integrable case.)

Also, the stability of the multi-soliton solutions seems to be es-
sentially open.

8. Scattering in the defocusing case

In the defocusing case η < 0, there are no solitons, so the solution
resolution conjecture would mean that every solution is dispersive. One
can expect that the solutions of (NLS) behave like a solution of the
linear Schrödinger equation. This is the scattering theory, according to
which a solution of (NLS) behaves as t→ ∞ like a solution of the linear
equation in the sense that there exists a scattering state u+ ∈ H1(RN),
such that

∥u(t)− eit∆u+∥H1 −→
t→∞

0. (8.1)

When a solution satisfies (8.1) we say that this solution scatters.
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A heuristic argument indicates that scattering can only be the rule if

α > 2
N
. Indeed, ∥eit∆u+∥L∞ decays at most like t−

N
2 (see e.g.: Lemma,

p. 69 in [121]; Decay Lemma, p. 228 in [66]; and Proposition 8.1 in [28]
for three different proofs), and this decay will make the potential |u|α
integrable in time only if α > 2

N
. In fact, if α ≤ 2

N
, then scattering

cannot be expected, see [121, Theorem 3.2 and Example 3.3, p. 68],
and [6] (one-dimensional case). More precisely, if α ≤ 2

N
(α ≤ 1 in

dimension N = 1) and if φ ∈ Σ where

Σ = H1(RN) ∩ L2(RN , |x|2dx), (8.2)

and u is the corresponding solution of (4.1), then there does not exist
any u+ ∈ L2 such that ∥u(t)− eit∆u+∥L2 → 0 as t → ∞. See e.g. [17,
Theorem 7.6.2]. (In the one-dimensional case and 1 < α ≤ 2, there is
no limit in Σ.)

Thus we see that it is only when α > 2
N

that one can expect scatter-
ing. Showing scattering for all initial values (in a certain space) is the
problem of asymptotic completeness. To be more precise, asymp-
totic completeness is for a certain space (H1, or Σ, for example), and
it means that for all initial value in this space, u(t) − eit∆u+ → 0 in
the same space. (Essential for constructing the scattering operator.)

Since asymptotic completeness involves arbitrarily large initial val-
ues, it cannot be the result of a fixed point argument, so it requires an
a priori estimate.

Two different estimates have been used. The pseudo-conformal con-
servation law (2.7) in the case η < 0 and α ≥ 4

N
immediately yields

the decay estimate
t2∥u(t)∥α+2

Lα+2 ≤ C,

for initial values in Σ. Using this decay estimate, one can prove as-

ymptotic completeness (in Σ) if α ≥ α0 where α0 = N+2+
√
N2+12N+4
2N

.

See [47] (case α ≥ 4
N
) and [129] (case α ≥ α0).

The other estimate is Morawetz’s estimate, see [80]. It implies that
in space dimension N ≥ 3,∫ ∞

0

∫
RN

|u(t, x)|α+2

|x|
<∞,

for all initial values in H1(RN). This implies sufficient decay to prove
asymptotic completeness in H1(RN) for α > 4

N
, see [50]. A modified

Morawetz estimate was introduced in [102], from which one can extend
the previous result to the cases N = 1, 2.

Morawetz’s estimate has given rise to various extensions (interaction
Morawetz estimates), which have become an important tool in the
study of (NLS), see e.g. [29, 113].
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In the case α > 2
N
, there is a general result by Tsutsumi and Ya-

jima [130] which proves that for every initial value in Σ there exists a
scattering state u+ ∈ L2(RN) such that u(t)− eit∆u+ → 0 in L2(RN).

However, if α ≤ α0 (still in the defocusing case), then no asymp-
totic completeness result in any space seem to be available.

The case α < 2
N

seems to be completely open. For every initial
value φ ∈ H1(RN), the solution u of (4.1) is global and uniformly
bounded in H1(RN). Moreover,

∥u(t)∥Lp −→
t→∞

0,

for every 2 < p < 2N
N−2

by [132]. If the initial value is in Σ, then
some explicit decay rate can be derived from the pseudo-conformal
conservation law [17, Theorem 7.3.1 (ii)]. Moreover, u does not de-
cay faster than the solutions of the linear Schrödinger equation, since

lim inf tN( 1
2
− 1

q
)∥u(t)∥Lq > 0 as t → ∞ for all 2 < q ≤ ∞, see [9, Theo-

rem 2.3]. In particular, by [17, Theorem 7.3.1 (ii)] and [9, Theorem 2.3],

c ≤ t
Nα

2(α+2)∥u(t)∥Lα+2 ≤ C,

for t large, with 0 < c < C < ∞. On the other hand, u does not
scatter, but what is the precise behavior of u for large time? Is some
kind of modified scattering possible?

Another interesting question : assuming α0 < α < 4
N
, what is

the asymptotic behavior of a solution with initial value φ ∈ H1(RN),
φ ̸∈ Σ?

9. Low-energy scattering in the focusing case

One can establish low energy scattering, i.e. scattering for small
solutions in an appropriate sense. This is usually obtained by a fixed
point argument producing solutions defined for all t ≥ 0 and having a
certain decay, which implies scattering. This argument works of course
equally well in the focusing and defocusing cases.

There are intrinsic limitations, in particular because there may
exist arbitrarily small standing waves, which do not scatter. So the
possibility of low energy scattering depends on the power α and the
norm which one chooses. (And there is always the limitation α > 2

N
.)

Using the scaling (5.8), we see that there are arbitrarily small stand-
ing waves in H1(RN) if α < 4

N
, so that low energy scattering in H1(RN)

can only be true if α ≥ 4
N
. And il fact, there is actually low energy

scattering in H1(RN), see [123, 124].
In the smaller space Σ given by (8.2), there are arbitrarily small

standing waves if α < 4
N+2

, so that α ≥ 4
N+2

is a necessary condition



AN OVERVIEW OF THE NONLINEAR SCHRÖDINGER EQUATION 21

of scattering for small initial data in Σ. There is indeed low energy
scattering in Σ under the slightly stronger assumption α > 4

N+2
, see [27,

Theorem 4.2].
Low energy scattering in some appropriate space (with sufficient reg-

ularity and decay) under the condition α > 2
N
, is established in [123,

124, 27, 45, 103] in dimension N = 1, 2, 3.
Results are only partial in the general case N ≥ 4, see [45, 103].

The difficulty is the following. Using the scaling (5.8) we see that
there are arbitrarily small standing waves in the space L2(RN , |x|2mdx)
if α < 4

N+2m
. Thus we see that in order to rule out the possibility

of small standing waves for α close to 2
N
, we would have to choose

m ≥ N
2
. However, for the Schrödinger equation, space decay and regu-

larity are related, so we would have to work in a space like Hm(RN) ∩
L2(RN , |x|2mdx). The problem is now that the nonlinearity is not suf-
ficiently smooth to be differentiated m times!

A (very partial) solution to the above differentiability problem is
given in [22]. Indeed, the defect of regularity of the nonlinearity |u|αu
is only at u = 0, so it is not seen by solutions that do not vanish.

The strategy in [22] is the following. First, applying the pseudo-
conformal transformation (2.4) to the Cauchy problem (4.1), one ob-
tains the non-autonomous equation{

i∂tv +∆v + η(1− bt)
Nα−4

2 |v|αv = 0,

v(0) = ψ,
(9.1)

where ψ(x) = e−i
b|x|2

4 φ(x). In addition the behavior of u(t, ·) as t→ ∞
is related to the behavior of v(t, ·) as t→ 1

b
. In particular, u scatters

in Σ if and only if v(t) has a limit in Σ as t→ 1
b
.

Note that if α > 2
N
, then the non-autonomous term (1 − bt)

Nα−4
2 is

integrable at t = 1
b
, and that

∥(1− b ·)
Nα−4

2 ∥L1(0, 1
b
) ≤

C

b
−→
b→∞

0.

Next, fix k > N
2
, n > N

2
+1, n > N

2α
, 2m > k+n+1, set J = 2m+2+k+n

and define X by

X = {u ∈ HJ(RN); ⟨x⟩nDβu ∈ L∞(RN), 0 ≤ |β| ≤ 2m

⟨x⟩nDβu ∈ L2(RN), 2m+ 1 ≤ |β| ≤ 2m+ 2 + k,

⟨x⟩J−|β|Dβu ∈ L2(RN), 2m+ 2 + k < |β| ≤ J}
(9.2)

with the obvious norm. In particular, ⟨x⟩−µ ∈ X for µ ≥ n. It follows
from Taylor’s formula, Sobolev’s embedding and energy estimates that
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(eit∆)t∈R is a continuous group on the space X . By direct calculations,
if u ∈ X satisfies K infx∈RN ⟨x⟩n|u(x)| ≥ 1, for some K > 0, then

∥ |u|αu∥X ≤ C(1 +K∥u∥X )2J∥u∥α+1
X

and a similar estimate holds for ∥ |u|αu− |v|αv∥X .
We can now use a simple contraction mapping argument C([0, 1

b
],X ).

It follows that if α > 2
N
, if ψ ∈ X satisfies

inf
x∈RN

⟨x⟩n|ψ(x)| > 0, (9.3)

and if b > 0 is sufficiently large, then there exist a unique solution
u ∈ C([0, 1

b
],X ) of (9.1). In terms of the original equation, this means

that if ψ ∈ X satisfies (9.3) and if b > 0 is sufficiently large, then the

solution of (4.1) with φ(x) = ei
b|x|2

4 ψ(x) scatters. Here there is no
smallness condition on φ, but instead it must be sufficiently oscillatory.

In the case α = 2
N
, modified scattering is expected, i.e. the ex-

istence of a phase θ(t, x) such that u(t, x) behaves like eiθ(t,x)eit∆u+.
There are only partial results, see [110, 16, 58, 119, 57, 72] One can,
however, use the strategy of [22], as is done in [23]. In the case α = 2

N
,

the power of (1 − bt) in (9.1) is (1 − bt)−1, which is not integrable.
However, ∫ t

0

(1− bs)−1−µds ≤ 1

bµ
(1− bt)−µ

for every µ > 0 and t < 1
b
. It follows that if a certain norm of

ei(t−s)∆|v(s)|αv(s) is estimated by (1− bs)−µ, then the integral in (9.1)
is estimated in that norm by the same power (1 − bt)−µ. Concretely,
this means that we can control a certain growth of v(t) as t → 1

b
.

Technically, this is achieved by introducing an appropriate cascade of
exponents. It follows that if ψ ∈ X satisfies (9.3) and if b > 0 is

sufficiently large, then the solution of (4.1) with φ(x) = ei
b|x|2

4 ψ(x)
behaves as t→ ∞ like

z(t, x) = (1 + bt)−
N
2 eiΦ(t,·)w0

( x

1 + bt

)
where w0 ̸= 0 and Φ is real valued. Equivalently, u(t) behaves like

ei
λ
b
|w0(

x
1+bt

)|
2
N log(1+bt)et∆u+, i.e. a free solution modulated by a phase,

where u+ = ei
b|x|2

4 e−i 1
b
∆w0. See Theorem 1.1 and Remark 1.3 (vi)

in [23] for details. Here again, there is no smallness condition on φ,
but instead it must be sufficiently oscillatory.

As for the defocusing equation, the case α < 2
N

is completely
open.
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10. Asymptotic behavior for the dissipative NLS

In this section, we briefly comment the case of the dissipative (NLS),
i.e. when ℑη > 0. Since ℑη ̸= 0, mass and energy are not conserved.
However, the mass is decreasing. It is not difficult to deduce that in
the mass-subcritical case all solutions are global. Concerning the long
time asymptotic behavior of the solutions, if α > 2

N
, then solutions (at

least for a certain class of initial values) are expected to scatter. In
fact, all the low energy scattering results mentioned in the preceding
section apply equally well to the case where η is an arbitrary complex
number.

We now consider the case α ≤ 2
N
. It turns out that, due to the

dissipative nature of the nonlinear term, the solutions tend to decay
faster than the solutions of the free Schrödinger equation.

In particular, in the case α = 2
N
, a large class of solutions have the

decay rate (t log t)−
N
2 as t→ ∞, see [118, 70, 71]. One can also argue as

in [23]. It follows that if ψ ∈ X satisfies (9.3) and if b > 0 is sufficiently

large, then the solution of (4.1) with φ(x) = ei
b|x|2

4 ψ(x) behaves as
t→ ∞ like

z(t, x) = (1 + bt)−
N
2 eiΘ(t,·)Ψ

(
t,

·
1 + bt

)
w0

( ·
1 + bt

)
(10.1)

where w0 ̸= 0, Φ is real valued and Ψ(t, x) goes to 0 as t → ∞ like

[log(1 + bt)]−
N
2 . This implies that the limit

lim
t→∞

(t log t)
N
2 ∥u(t)∥L∞ = (αℑη)−

N
2

exists (and is independent of the initial value). See [23, Theorem 1.2]
for details.

In the case α < 2
N

several results are available under some “dissipa-
tive” condition between ℑη and ℜη (see [71, 56]), or if α is “close” to
2
N

(see [70, 55]). Here also, one can argue as in [23]. It follows that if

2

N + 2
< α <

2

N
,

(and assuming stronger conditions on the integers n, k,m) if ψ ∈ X
satisfies (9.3) and if b > 0 is sufficiently large, then the solution

of (4.1) with φ(x) = ei
b|x|2

4 ψ(x) behaves as t → ∞ like z(t, x) given

by (10.1), but where now Ψ(t, x) goes to 0 as t→ ∞ like (1+ bt)−
2−Nα

2α .
This implies that the limit

lim
t→∞

t
1
α∥u∥L∞ =

(2−Nα

2α|ℑλ|

) 1
α
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exists (and is independent of the initial value). See [19, 20] for details.

11. Nature of finite-time blowup in the focusing case

In this section, we consider the focusing (η > 0), mass-critical or
supercritical case (α ≥ 4

N
) of (NLS). In particular, some solutions

blow up in finite time.
What mechanism makes a solution of (NLS) blow up in finite time,

and what singularity develops at the blow-up time are questions that
have been studied by a number of authors during the past 40 years,
and that are still being actively studied. See for instance the survey
articles [82] and [116].

11.1. The mass-critical case. We first consider the mass-critical case
α = 4

N
. The (only) general result is the lower estimate (4.5) which

implies that if a finite-energy solution of (NLS) blows up at the time
T , then

∥∇u(t)∥L2 ≥ δ√
T − t

, (11.1)

with δ > 0 for t close to T .
The first precise description of blowup is Weinstein’s solution (5.15),

which satisfies

∥∇vT (t)∥L2 ∼ C

T − t
(11.2)

as t → T , with C = T∥∇Q∥L2 . In other words, this solution blows up
twice faster than the universal lower estimate (11.1). It is a blowing
up solution ofminimal mass, since ∥vT (t)∥L2 = ∥Q∥L2 , while ∥φ∥L2 <
∥Q∥L2 implies global existence. In fact, vT is the only solution (up to
the invariances of the equation) that blows up in finite time on the
critical sphere, see Merle [88, 89].

Blowup at the rate (11.2) is achieved by a whole class of solutions.
More precisely, there is the following result of Bourgain and Wang [15].

Theorem 11.1. Suppose N = 1 or N = 2. There exists an integer
A ≥ [N

2
] + 1 such that if

ψ ∈ XA := {u ∈ HA(RN); (1 + |x|A)u ∈ L2(RN)},
and Dβψ(0) = 0 for |β| ≤ A − [N

2
] − 1, then there exist δ > 0 and a

solution u of (NLS) on [1 − δ, 1) which satisfies u(t) − v1(t) → ψ in
H1(RN) as t ↑ 1. In particular, u blows up at t = 1 with the rate (11.2).

The strategy of proof of Theorem 11.1 is the following. Since ψ ∈
H1(RN), there exist ν > 0 and a solution z ∈ C([1 − ν, 1], H1(RN))
of (NLS) such that z(1) = ψ. Then one looks for a solution of the form
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u = v1 + z + w. This last equation for w is solved by a perturbation
argument, after applying the pseudo-conformal transformation to send
t = 1 to t = ∞. An important ingredient is the study of the linearized
operators in [134].

It turns out that the Bourgain-Wang solutions are unstable if ∥ψ∥XA

is sufficiently small. Indeed, there exist initial values arbitrarily close
to u(1−δ) such that the corresponding solution of (NLS) scatters, and
other initial values arbitrarily close to u(1 − δ) such that the corre-
sponding solution of (NLS) blows up in finite time, but with a blow-up
rate different from (11.2). See [99] for a precise statement.

On the other hand, it was conjectured in [77] on the basis of formal
arguments and numerical computations that the solutions of (NLS) in
the mass-critical case should blow up with a different rate, more pre-
cisely ∥∇u(t)∥L2 should behave like [(T − t)−1 log | log(T − t)|] 12 gener-
ically. The first rigorous proof of such a blow-up regime is due to
Perelman [111]: If N = 1, then for initial values in some open set (in
the space Σ given by (8.2)) of perturbations of the ground state Q, the
corresponding solution u of (4.1) blows up in finite time T and

u(t, x) = eiµ(t)λ(t)
1
2 (Q(λ(t)x) + χ(t, λ(t)x)),

where λ(t)
√

log | log(T−t)|
T−t

→ C ∈ (0,∞) as t → T and χ(t, ·) is small in

L2(RN) ∩ L∞(RN).
A complete description of the blowup near the critical sphere was

obtained by Merle and Raphaël in a series of papers [90, 91, 92, 114,
93, 94, 41].

Theorem 11.2. Suppose N ≤ 5. There exists δ > 0 such that if
φ ∈ H1(RN) satisfies

∥Q∥L2 < ∥φ∥L2 < ∥Q∥L2 + δ, (11.3)

and E(φ) ≤ 0, then the corresponding solution u of (4.1) blows up in
a finite time T , and

u(t, ·)− λ(t)−
N
2 Q

( · − x(t)

λ(t)

)
eiγ(t) −→

t↑T
u⋆ (11.4)

in L2(RN), where u⋆ ∈ L2(RN), but u⋆ ̸∈ Lp(RN) for p > 2, and the
parameters λ(t) > 0, γ(t) ∈ R and x(t) ∈ RN satisfy x(t) → x(T ) ∈
RN and

λ(t)

√
log | log(T − t)|

T − t
−→
t↑T

√
2π. (11.5)
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In addition,

∥∇u(t)∥L2

∥∇Q∥L2

√
T − t

log | log(T − t)|
−→
t↑T

1√
2π
. (11.6)

The conclusions of Theorem 11.2 are the result of several long and
delicate articles. Concerning the construction of the blowing-up so-
lutions, the strategy consists first in constructing a good approximated
solution in the form of a bubble concentrating the ground state. Then
one needs a control of the remainder, which is obtained via energy and
virial-type estimates. Some orthogonality conditions on linearized
operators (spectral property) are required for two purposes. First,
to derive the modulation equations for the parameters like λ(t) and
x(t). Second, to control the (infinite dimensional) remainder. There
is some flexibility on the choice of these orthogonality conditions, but
in the end one must check that they are satisfied. This is where the
assumption N ≤ 5 comes from. Appropriate conditions are satisfied
in dimension N = 1. That appropriate conditions hold in space di-
mensions 2 ≤ N ≤ 5 have been established by a computer-assisted
proof [41]. The recent article [137] establishes a certain spectral prop-
erty in space dimensions 2 ≤ N ≤ 12.
As opposed to the Bourgain-Wang solutions, the log log blowup

of Theorem 11.2 is stable. More precisely, suppose that φ satis-
fies (11.3) and the corresponding solution u of (4.1) blows up at the fi-

nite time T with the estimate ∥∇u(t)∥L2 ≤ C[(T−t)−1 log | log(T−t)|] 12 .
It follows that there exists δ > 0 such that if ∥φ̃− φ∥H1 ≤ δ, then the
corresponding solution ũ of (4.1) satisfies all the conclusions of Theo-
rem 11.2. (Of course, this applies to u itself.)

In addition to the above, it follows from [114] that if φ satisfies (11.3)
and the corresponding solution u of (4.1) blows up at the finite time
T , then either u satisfies the conclusions of Theorem 11.2, or else

lim inf
t↑T

(T − t)∥∇u(t)∥L2 > 0.

In other words, in the neighborhood of the critical sphere, blowup
occurs either at the log log regime, or else at a blow-up rate which is
at least C(T − t)−1.
Theorem 11.2 and the other results in [90, 91, 92, 114, 93, 94, 41]

give a precise description of what happens in the neighborhood of the
critical sphere, however, many important questions remain open. Here
are some of them.

• In the neighborhood of the critical sphere, solutions blow up either at
the log log regime, or else at least at the pseudo-conformal rate (T −
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t)−1. The solutions constructed in [83] blows up at the rate | log(T −
t)|(T − t)−1 which is strictly faster than the pseudo-conformal rate,
but these solutions are not in the neighborhood of the critical sphere
(they are the sum of at least two interacting bubbles). Therefore, on
may ask if the pseudo-conformal rate is the maximal blow-up rate in
the neighborhood of the critical sphere or if some solutions blow up
faster.

• Away from the critical sphere, it seems that very little is known. The
solutions of Bourgain and Wang [15], and the solutions of Martel and
Raphaël [83] can have arbitrarily large L2 norm. Fan [39] constructed
arbitrarily large solutions that blow up at the log log rate (by “glue-
ing” several Merle-Raphaël solutions that blow up at different points
in space). (See also [112, Corollary 1].) On the other hand it seems
that there is no general description or classification.

• Is there any lower estimate for blowup? (Better than (11.1).) This is
true in the neighborhood of the critical sphere, but can any (larger)
solution blow up more slowly than the log log rate?

• Is there any upper estimate for blowup? Can any solution blow up
faster than the | log(T − t)|(T − t)−1 rate of [83]?

• Can any solution blow up at a rate between the log log and the
pseudo-conformal (T − t)−1 rates? (This is ruled out in the neigh-
borhood of the critical sphere, but might be possible elsewhere.)

11.2. The mass-supercritical case. We now consider the case α >
4
N
. The first general result is the lower estimate (4.5), i.e.

∥∇u(t)∥L2 ≥ c(T − t)−
4−(N−2)α

4α , (11.7)

for t close to T , if u is a solution of (NLS) that blows up at T .
Another general lower bound is proved in [95] under some restric-

tive assumptions. Suppose N = 2 and 2 < α < 5 or N ≥ 3 and
4
N
< α < 4

N−2
. There exists γ = γ(N,α) such that if φ ∈ H1(RN) is

radially symmetric, and the corresponding solution u of (4.1) blows up
at T <∞, then ∥u(t)∥

L
Nα
2

≥ | log(T − t)|γ for t close to T .

Also, integrating twice the variance identity (2.6), one obtains easily
that if φ ∈ Σ given by (8.2) and the corresponding solution u of (4.1)
blows up at the finite time T , then there holds the upper estimate∫ T

0

(T − t)∥∇u(t)∥2L2dt <∞. (11.8)

In particular, for some sequence tn → T ,

(T − tn)∥∇u(tn)∥L2 −→
n→∞

0.
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This upper estimate does not match the lower estimate (11.7).
A stronger upper bound than (11.8) is obtained in [100], by using

a localized variance identity. Suppose N = 2 and 2 < α < 5 or N ≥ 3
and 4

N
< α < 4

N−2
. If φ ∈ H1(RN) is radially symmetric and the

corresponding solution u of (4.1) blows up at the finite time T , then∫ T

t

(T − τ)∥∇u(τ)∥2L2dτ ≤ C(φ)(T − t)
2σ
1+σ , (11.9)

where σ = 4−α
α(N−1)

. In particular, for some sequence tn → T ,

∥∇u(tn)∥L2 ≤ C(T − tn)
− 1

1+σ .

Note that 1
1+σ

> 4−(N−2)α
4α

, so that there is a gap between this upper
bound and the lower bound (11.7). However, it turns that both bounds
are achieved by some solutions (at least for α sufficiently close to 4

N
).

If 1 ≤ N ≤ 5 and α is sufficiently close to 4
N
, then there exists

an open set of initial values in H1(RN) such that the corresponding
solution of (4.1) blows up in finite time with the self-similar rate

∥∇u(t)∥L2 ∼ 1

(T − t)
4−(N−2)α

4α

.

see [98] for a precise statement.
On the other hand, if N = 2 and 2 < α < 5 or N ≥ 3 and 4

N
< α <

4
N−2

, then there exist “collapsing ring solutions” that satisfy

∥∇u(t)∥L2 ∼ 1

(T − t)
1

1+σ

.

see [100] for a precise statement. See also [115, 117].
Ortoleva and Perelman [109] have described some infinite-time and

finite-time blow-up solutions for the 3D energy critical focusing (NLS):
A global solution that blows up as t→ ∞, by concentrating the ground
state W (x) = (1+ 1

3
|x|2)− 1

2 . More precisely, for every sufficiently small
ν, µ ∈ R and any δ > 0, there exist T > 0 and a global, finite-energy
solution u ∈ C([T,∞), Ḣ1(R3)) of (NLS) such that

u(t, x) = eiµ log tt
ν
2W (tνx) + ζ(t, x),

where ∥ζ(t)∥Ḣ1 ≤ δ and ∥ζ(t)∥L∞ ≤ Ct−
1+ν
2 . See [109, Theorem 1.1].

If we choose ν > 0, then although the Ḣ1 norm of u is bounded, this
corresponds to blowup by concentration of W . The proof is based on
the construction of a “good” approximate solution, and the estimate of
the remainder by energy estimates. In [109, Remark 1.5] the authors
announce that by the same techniques one can prove finite-time blowup.
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More precisely, they claim that for every µ ∈ R and ν > 1, there exist
T > 0 and a finite-energy solution u of (NLS) which blows up at T , of
the form

u(t, x) = eiµ log(T−t)(T − t)−
1+2ν

4 W ((T − t)−
1+2ν

2 x) + ζ(t, x),

where ∥ζ(t)∥Ḣ1 is arbitrarily small. (Note that the first term has a

fixed Ḣ1 norm, which is precisely ∥W∥Ḣ1).
There are many open problems concerning finite-time blowup in the

mass-supercritical case. In particular, one can ask the following ques-
tions.

• The lower possible blow-up rate (11.7) is achieved by an open set of
solutions, but for slightly supercritical nonlinearities, see [98]. What
about general α > 4

N
?

• The faster blowup rate given by (11.9) is also achieved, see [98], but
is there any solution blowing up at an intermediate rate?

• What are the stable blow-up rates besides the slow rate (11.7)?
• What are the possible blow-up mechanisms?

We conclude this section with a finite-time blowup result of a com-
pletely different nature. Indeed, it concerns the defocusing case, but
in the energy-supercritical case. As observed earlier, in this case,
the control of the H1 norm by the conservation laws is not necessarily
sufficient to imply global existence. It turns out that some solutions
can indeed blow up in finite time, as shows the following result.

Theorem 11.3 ([97]). Assume N = 5, α = 8; or N = 6, α = 4; or
N = 8, α = 2; or N = 9, α = 2. Assume further that η < 0. (So that
equation (NLS) is energy-supercritical and defocusing.) It follows that
there exist smooth, radially symmetric initial values φ ∈ H∞(RN) such
that the corresponding solution of (NLS) (given by Theorem 4.1) blows
up in finite time.

More precisely, there exists a sequence (rk)k≥1 ⊂ (2, 4+αN
4+α

√
N
) with

rk → 4+αN
4+α

√
N

such that for all k ≥ 1 there exists a finite-codimensional

manifold of radially symmetric initial values φ ∈ H∞(RN) such that
the corresponding solution of (NLS) blows up in a finite time time
0 < T <∞ at x = 0 and

(T − t)
1
α

(
1+

rk−2

rk

)
∥u(t)∥L∞ −→

t↑T
c > 0.

The proof relies on the construction of smooth self-similar solutions
of the compressible Euler equation [96]. This is applied to (NLS) by
using its hydrodynamical formulation u(t, x) = ρ(t, x)eiϕ(t,x).



30 AN OVERVIEW OF THE NONLINEAR SCHRÖDINGER EQUATION
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[100] Merle F., Raphaël P. and Szeftel J.: On collapsing ring blow-up solutions
to the mass supercritical NLS. Duke Math. J. 163 (2014), no. 2, 369–431.
(MR3161317) (doi: 10.1215/00127094-2430477)

[101] Meshkov, V. Z.: Weighted differential inequalities and their application for
estimates of the decrease at infinity of the solutions of second-order elliptic
equations. (Russian) Translated in Proc. Steklov Inst. Math. 1992, no. 1,
145–166. Theory of functions (Russian) (Amberd, 1987). Trudy Mat. Inst.
Steklov. 190 (1989), 139–158. (MR1005343)

[102] Nakanishi K.: Energy scattering for nonlinear Klein-Gordon and Schrödinger
equations in spatial dimensions 1 and 2, J. Funct. Anal. 169 (1999), no. 1,
201–225. (MR1726753) (doi: 10.1006/jfan.1999.3503)

http://www.ams.org/mathscinet-getitem?mr=MR1139066
http://dx.doi.org/10.1002/cpa.3160450204
http://www.ams.org/mathscinet-getitem?mr=MR1203233
http://dx.doi.org/10.1215/S0012-7094-93-06919-0
http://www.ams.org/mathscinet-getitem?mr=MR2150386
http://dx.doi.org/10.4007/annals.2005.161.157 
http://www.ams.org/mathscinet-getitem?mr=MR1995801
http://dx.doi.org/10.1007/s00039-003-0424-9
http://www.ams.org/mathscinet-getitem?mr=MR2061329
http://dx.doi.org/10.1007/s00222-003-0346-z
http://www.ams.org/mathscinet-getitem?mr=MR2169042
http://dx.doi.org/10.1090/S0894-0347-05-00499-6 
http://www.ams.org/mathscinet-getitem?mr=MR2116733
http://dx.doi.org/10.1007/s00220-004-1198-0
http://www.ams.org/mathscinet-getitem?mr=MR2427005
http://dx.doi.org/10.1353/ajm.0.0012 
https://arxiv.org/abs/1912.10998
https://arxiv.org/abs/1912.11005
http://www.ams.org/mathscinet-getitem?mr=MR2729284
http://dx.doi.org/10.1007/s00039-010-0081-8
http://www.ams.org/mathscinet-getitem?mr=MR3086066
http://dx.doi.org/10.1353/ajm.2013.0033
http://www.ams.org/mathscinet-getitem?mr=MR3161317
http://dx.doi.org/10.1215/00127094-2430477
http://www.ams.org/mathscinet-getitem?mr=MR1005343
http://www.ams.org/mathscinet-getitem?mr=MR1726753
http://dx.doi.org/10.1006/jfan.1999.3503


AN OVERVIEW OF THE NONLINEAR SCHRÖDINGER EQUATION 37
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673. (MR1852922) (doi: 10.1007/PL00001048)
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